

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

Faculty of Computing and Informatics

Department of Computer Science

QUALIFICATION: Bachelor of Computer Science, Bachelor of Informatics		
QUALIFICATION CODE: 07BACS, 07BAIF	LEVEL: NQF 6	
COURSE: Data Structures and Algorithms	COURSE CODE: DSA610S	
DATE: June 2019	SESSION: 1	
DURATION: 3 Hours	MARKS: 100	

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER		
EXAMINER(S)	MR MIKE ABIA	
	DR CAMERON MACRAE	
	MR JEREMIA LUMBASI	
	MR HERMAN KANDJIMI	
	MR VEERABHADRAM PADURI	
	MR STEVEN TJIRASO	
MODERATOR:	PROF. JOSE QUENUM	

THIS QUESTION PAPER CONSISTS OF 5 PAGES

(Excluding this front page)

INSTRUCTIONS

- 1. Respond to ALL problems in sections A, B and C.
- 2. Use the examination script booklet provided.
- 3. Each section must be started on a new page.
- 4. NUST examination rules and regulations apply.
- 5. Follow instructions in the examination script booklet.
- 6. Write clearly and neatly.

SECTION A: Multiple Choice

[20 marks]

- Respond to ALL problems in this section.
- Select the most suitable response to each of the problems in this section.

Problem A1

Which one of the below mentioned is a data structure?

- A. Peek
- B. pop
- C. Stack
- D. insert

[2 marks]

Problem A2

Which of the following is true about recursion?

- A. A recursion happens when an element occurs many times in a linked list.
- B. A recursive program segment is very economic in terms of memory when compared to a well-constructed iterative program segment that performs the same task.
- C. Not all recursive programme segments can be written iteratively.
- D. A recursive program segment calls itself.

[2 marks]

Problem A3

Which of the following algorithms is applicable only on sorted data?

- A. Binary search
- B. Sequential search
- C. Linear search
- D. None of the above

[2 marks]

Problem A4

Which of the following operations can be performed on singly-linked list, doubly-linked list and circular linked list?

- A. Insertion adding an element to the list.
- B. Deletion removing an element from the list.
- C. Search seek for an element in a given list.
- D. All of the above.

[2 marks]

Problem A5

A concise, unambiguous and terminating sequence of operations to be performed to get the solution to a problem is called _____.

- A. Complexity analysis
- B. Problem
- C. Algorithm
- D. Requirements

[2 marks]

Problem A6

If T is a binary search tree storing 12 elements. What is the smallest possible height of T?

- A. 1 or 2
- B. 3 or 4
- C. 5 or 6
- D. 7 or 8

[2 marks]

Problem A7

Which of the following is an approach to traversing a graph?

- A. Binary search.
- B. Sequential search.
- C. Both A and B are approaches to traversing a graph.
- D. None of A or B is an approach to traversing a graph.

[2 marks]

Problem A8

What is the time complexity of the following code?

```
int a = 0;
for (i = 0; i < N; i++) {
  for (j = N; j > i; j- -) {
     a = a + i + j;
  }
}
```

- A. O(N)
- B. O(N*log(N))
- C. O(N * Sqrt(N))
- D. O(N*N)

[2 marks]

Problem A9

The worst case occurs in linear search algorithm _____

- A. when item is somewhere in the middle of the array
- B. when item is not the array at all
- C. when item is the last element in the array
- D. Item is the last element in the array or item is not there at all

[2 marks]

Problem A10

Construct a binary search tree (BST) by inserting the following alphabetically ordered keys in the order they appear here: DCEBHFG. If we count the root as level 0, what keys appear at level 2 of a BST constructed from the sequence D,C,E,B,H,F,G? **Hint:** construct the binary search tree (BST) by picking from left to right, letters from the sequence and inserting them into a BST, thus D is the root of the tree.

- A. G
- B. BH
- C. HG
- D. CE

[2 marks]

SECTION B

[20 marks]

- Respond to ALL problems in this section.
- Clearly indicate each of the following assertions as true (T) or false (F).

Problem B1

A tree is always a linear data structure.

[2 marks]

Problem B2

Doubly-linked lists need to be searched using depth-first or breath-first searches.

[2 marks]

Problem B3

Push and pop operations are associated with stack data structure.

[2 marks]

Problem B4

O(log(n)) is preferable as an algorithm's complexity than $O(n^2)$.

[2 marks]

Problem B5

An algorithm is a special data structure.

[2 marks]

Problem B6

Probabilistic complexity represents the probability of an algorithm processing input in a specific time. [2 marks]

Problem B7

In binary search, start at the beginning of the list and check every element in the list.

[2 marks]

Problem B8

Inserting a key into a sorted singly linked list has O(n) complexity where n is the number of elements in the list.

[2 marks]

Problem B9

Good algorithms are more important than fast computers.

[2 marks]

Problem B10

An array cannot be used to implement a binary search tree.

[2 marks]

SECTION C

[60 marks]

• Respond to ALL problems in this section.

Problem C1

The following sequence of numbers needs to be sorted in ascending order: 8,5,2,6,9,3,1,4,0,7. If inplace selection sort was used, copy and complete the table below.


Sequence after Step 1 (Selection 1)	
Sequence after Step 2 (Selection 2)	
Sequence after Step 3 (Selection 3)	

[3x5 marks]

Problem C2

A binary search tree is a data structure where each node has a comparable key (non-repeating) and satisfies the restriction that the key in any node is larger than the keys in all nodes in that node's left sub-tree and smaller than the keys in all nodes in that node's right sub-tree. Each non-leaf node has exactly two child nodes. Each child must either be a leaf node or the root of another binary search tree.

In representing some incomplete set of data, a programmer constructed the following binary search tree.



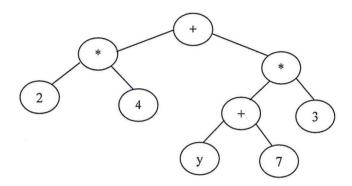
- a. Determine the valid range of values of x.
- b. Determine the valid range of values of y.

[5 marks] [10 marks]

Problem C3

The following diagram represents a graph.

Give the result if the graph is traversed using;


- a. Depth-first-search starting at vertex S
- b. Breadth-first-search starting at vertex S.

[10 marks]

[5 marks]

Problem C4

Expression tree is a binary tree in which each internal node corresponds to an operator and each leaf node corresponds to an operand. Given the following expression tree, write down the outcome of in-order traversal of the tree.

[15 marks]

****End of Paper****